СОДЕРЖАНИЕ

Введение	2
Силовые кабели с изоляцией из сшитого полиэтилена на высокое напряжение	4
Кабели в полиэтиленовой оболочке на напряжение 110 — 220 кВ	8
Конструктивные характеристики кабелей в полиэтиленовой оболочке на напряжение 64/110 кВ	10
Конструктивные характеристики кабелей в полиэтиленовой оболочке на напряжение 127/220 кВ	11
Кабели в оболочке из ПВХ-пластиката на напряжение 64/110 кВ	12
Конструктивные характеристики кабелей в оболочке из ПВХ-пластиката на напряжение 64/110 кВ	15
Конструктивные характеристики кабелей в оболочке из ПВХ-пластиката на напряжение 127/220 кВ	15
Кабели в оболочке из безгалогенной полимерной композиции на напряжение 64/110 кВ	16
Конструктивные характеристики кабелей в оболочке из безгалогенной полимерной композиции	
на напряжение 64/11 кВ	17
Электрические характеристики кабелей на напряжение 64/110 кВ	18
Электрические характеристики кабелей на напряжение 127/220 кВ	22
Допустимые токи короткого замыкания по жиле и экрану	24
Заземление экранов	26
Поправочные коэффициенты	28
Мормы намотии	30

Данный каталог содержит справочную информацию. Предназначен для проектных, монтажных и эксплуатирующих организаций, применяющих кабель с СПЭ - изоляцией производства ООО «Камский кабель».

Введение

Общество с ограниченной ответственностью «Камский кабель» производит кабельно-проводниковую продукцию. Для её изготовления предприятие использует современный производственный комплекс «Камкабель», самый крупный в России. Численность персонала на сегодняшний день составляет около 3 000 человек.

Завод «Камский кабель» расположен в городе Перми – крупнейшем административном, промышленном, научном и культурном центре с населением около 1 млн человек, на правом берегу реки Камы.

В круг потребителей ООО «Камский кабель» входят предприятия различных отраслей промышленности:

- энергетики,
- металлургической отрасли,
- угольной и других добывающих отраслей,
- нефтегазовой отрасли,
- машиностроения,
- строительной индустрии,
- авиастроения,
- судостроения,

а также других отраслей промышленности.

Современное технологическое оборудование, мощная испытательная база предприятия обеспечивают выпуск качественных кабельно-проводниковых изделий с различными видами изоляции:

- бумажно-пропитанной,
- резиновой,
- из ПВХ-пластиката,
- сшитого полиэтилена,
- фторопластовых пленок,
- стеклонитей,
- эмальлаков,

других современных материалов.

Отгрузка готовой продукции

Сертификат ИСО 9001-2008.

мых предприятием изделий включает в себя более ценовая политика. 20 000 маркоразмеров кабелей и проводов, выпускаемых как по российским (ГОСТ и ТУ), так и по Работают филиалы в Москве, Санкт-Петербурге, зарубежным стандартам ІЕС (МЭК), а также национальным стандартам других стран (Великобритании - BS, Германии - DIN).

бель», имеет маркировку «Камкабель».

клиентов, четкое выполнение всех обязательств, новые рынки сбыта.

Самая широкая в отрасли номенклатура предлагае- персональный подход к каждому клиенту и гибкая

Новосибирске, Казани, Краснодаре и Хабаровске.

В каждом городе расположен склад с основными Вся продукция, производимая ООО «Камский ка- видами кабельно-проводниковой продукции, пользующейся повышенным спросом в этом регионе. Основными принципами предприятия являются Остальные марки поставляются на заказ со склада максимально полное удовлетворение потребностей в Перми. В ближайших планах компании — выход на

Производство кабелей с изоляцией из СПЭ.

Центральная заводская лаборатория

Испытательная станция HIGH VOLT

Силовые кабели с изоляцией из сшитого полиэтилена на напряжение 110-220 кВ

В энергетике существует стабильный спрос на кабели высокого напряжения. Время маслонаполненного кабеля на напряжение 100—500 кВ ушло в прошлое, появилась потребность в новой современной продукции — высоковольтном кабеле с изоляцией из сшитого полиэтилена.

Для удовлетворения потребительского спроса расширена номенклатура и созданы заводские технические условия (ТУ 16.К180-022-2010) для производства кабелей с изоляцией из сшитого полиэтилена напряжением 45—330 кВ

В 2008 г. было освоено производство кабелей на среднее и высокое напряжение (до 220 кВ включительно) с изоляцией из пероксидносшиваемого полиэтилена.

Завод «Камский кабель» получил сертификаты соответствия на кабели 110–220 кВ (кабели на напряжение 110–220 кВ сечением 1600 мм² успешно выдержали типовые испытания, проведенные на испытательном стенде ОАО «ВНИИКП», г. Москва, и годичные испытания, проведенные на испытательном стенде ОАО «ВНИИКП» (64/110 кВ) и на испытательном стенде СЕSI, Германия (127/220 кВ)).

Кабели напряжением 64/110 кВ производства ООО «Камский кабель» были аттестованы в ОАО «ФСК

ЕЭС» и одобрены для применения на объектах ОАО «ФСК ЕЭС» и ОАО «Холдинг MPCK».

Сервис при поставке высоковольтного кабеля 110—220 кВ ООО «Камский кабель» включает в себя по желанию клиента комплектацию кабеля арматурой зарубежных фирм «Тусо Electronics Raychem GmbH» (Германия), «Pfisterer Ixosil AG» (Швейцария), «Pfisterer Kontaktsysteme GmbH» (Германия), «G&W Electric Company» (США), «ССС GmbH Berlin» (Германия), шефмонтаж кабельных линий, монтаж кабельных муфт и привлечение специализированных фирм для монтажа кабельных линий.

Кабели с изоляцией из сшитого полиэтилена (СПЭ) призваны заменить устаревшие маслонаполненные кабели.

Линии изолирования EPL 30 (6—35 кВ) и EPL 50 (6—220 кВ) Maillefer

Линия ошлангования EEL 60-241 Maillefer для кабелей с изоляцией из сшитого полиэтилена

В связи с тем, что маслонаполненные кабели имеют ряд серьезных недостатков, практически во всем мире, в т.ч. и в России, в новых проектах по строительству кабельных линий высокого напряжения применяются только кабели с изоляцией из сшитого полиэтилена.

Полный переход на кабели с изоляцией из СПЭ взамен маслонаполненных кабелей обусловлен рядом неоспоримых преимуществ:

- 1. более высокая надежность в эксплуатации;
- 2. меньшие расходы на реконструкцию и содержание кабельных линий;
- 3. низкие диэлектрические потери (коэффициент диэлектрических потерь 0,001 вместо 0,008);
- 4. высокая стойкость к повреждениям;
- 5. большая пропускная способность за счет увеличения допустимой температуры нагрева жил: длительной (90 °C вместо 70 °C), при перегрузке (130 °C вместо 90 °C);
- 6. более высокий ток термической устойчивости при коротком замыкании (250 °C вместо 200 °C);
- 7. низкое влагопоглощение, обеспеченное различными уровнями герметизации;
- 8. меньший вес, диаметр и радиус изгиба, что облегчает прокладку на сложных трассах;
- 9. возможность прокладки на трассах с неограниченной разностью уровней;
- 10. экологичный монтаж и эксплуатация (отсутствие свинца, масла, битума).

Для производства кабелей высокого напряжения (64/110 и 127/220 кВ) на заводе «Камский кабель» работает новый производственный комплекс, оснащенный современным оборудованием по всей технологической цепочке изготовления высоковольтных кабелей: волочильные машины фирм Niehoff (Германия) и Lesmo (Италия), машина первичной скрутки токопроводящей жилы фирмы «Cortinovis» (Италия); наклонная экструзионная линия фирмы «Maillefer» (Финляндия); машина экранирования и общей скрутки типа Drum Twister фирмы «Cortinovis» (Италия); линия ошлангования «Maillefer» (Финляндия), испытательная станция фирмы «High Volt» (Германия). Для изоляции кабелей применяются высококачественные чистые полиэтиленовые композиции последнего поколения фирм «Borealis» (Швеция) и «DOW Wire and Cable» (США).

Линия общей скрутки и экранирования

Кабели предназначены для передачи и распределения электрической энергии при номинальном напряжении 64/110 кВ или 127/220 кВ частоты 50 Гц в трехфазных сетях с заземленной нейтралью и прямой связью с воздушной линией или без нее на трассах с неограниченной разностью уровней.

estable of social summer with coo fice the spaceak of fice partition pactice the	о уровном.
Эксплуатационные характеристики кабелей	Значение
Номинальное переменное напряжение частоты 50 Гц, (кВ)	64/110, 127/220
Длительно допустимая температура нагрева жил, (°C)	+90
Предельно допустимая температура нагрева жилы кабеля при работе в режиме перегрузки, (°C) (продолжительность работы кабеля в режиме перегрузки должна быть не более 100 часов за год и не более 1000 часов за срок службы)	+130 (для кабелей 110 кВ) +105 (для кабелей 220 кВ)
Предельно допустимая температура жилы кабеля при коротком замыкании, (°С)	+250
Предельно допустимая температура медного экрана кабеля при коротком замыкании продолжительностью до 5 сек., (°C)	+350
Эксплуатация при температуре окружающей среды, (°C) - для кабелей с ПВХ оболочкой - для кабелей с ПЭ оболочкой	-50/+50 -60/+50
Монтаж без предварительного подогрева при температуре не ниже, (°C) - для кабелей АПвВ, ПвВ, АПвВнг, ПвВнг, - для кабелей АПвПг, ПвПг, АПвП2г, ПвП2г, АПвПуг, ПвПуг, АПвПу2г, ПвПу2г	-5 -10
Радиус изгиба кабеля (наружных диаметров)	15
Гарантийный срок эксплуатации, (лет)	5*
Срок службы кабелей не менее, (лет)	30**

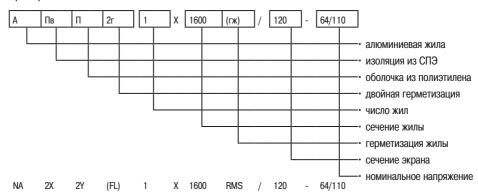
^{*} Гарантийный срок исчисляют с даты ввода кабельной линии в эксплуатацию, но не позднее 6 месяцев с даты изготовления. Изготовитель гарантирует качество кабеля при соблюдении заказчиком (потребителем) условий транспортирования, хранения, монтажа и эксплуатации.

POCC RU.ME80.H01826

C-RU.ПБ14.В.00130

POCC RU.ME80.H01732

С-RU.ПБ14.В.00012


^{**} Срок службы кабелей — не менее 30 лет при соблюдении заказчиком (потребителем) условий транспортирования, хранения, прокладки (монтажа) и эксплуатации. Срок службы исчисляют с даты ввода кабелей в эксплуатацию. Фактический срок службы кабелей не ограничивается указанным сроком службы, а определяется техническим состоянием кабеля.

Маркировка кабелей

Обозначение	ение Конструктивный элемент		Соответствие зарубежной маркировке	
	.,	Украина	Германия	
Α	алюминиевая жила (без обозначения – медная)	Α	Α	
Пв	изоляция из сшитого полиэтилена	Пв	2X	
*	проволочный экран	Э	S	
П	оболочка из полиэтилена	П	2Y	
Пу	оболочка из полиэтилена увеличенной толщины	Пу	2Y	
В	оболочка из поливинилхлоридного (ПВХ) пластиката	В	Υ	
Внг, Внг-(А)	оболочка из ПВХ-пластиката пониженной горючести	Внг	Υ	
Внг(A)-LS	оболочка из материала пониженной горючести с низким дымо-газовыделением (Low Smoke)	Внгд Внгд(А)	Υ	
Γ	продольная герметизация	Γ	F	
2г	продольная и поперечная (двойная) герметизация (водоблокирующими лентами и алюмополимерной лентой)	га	FL	
HF	оболочка из полимерной композиции, не содержащая галогенов		Н	
Ka, Kc	круглая проволочная броня из алюминия или алюминиевого сплава Ак		R	
А, Аг	оболочка из алюминиевого сплава, в т.ч. гофрированная KL		KL	
С	оболочка из свинцового сплава		K	

^{* -} в российской маркировке сечение экрана указано через дробь после сечения жилы, все кабели имеют металлический экран.

Рисунок 1. Пример обозначения

Кабели в полиэтиленовой оболочке на напряжение 110-220 кВ

Рисунок 1. Силовой кабель с изоляцией из сшитого полиэтилена в полиэтиленовой оболочке

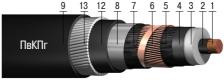


Рисунок 3. Силовой кабель с изоляцией из сшитого полиэтилена с проволочной броней

Рисунок 2. Силовой кабель с изоляцией из сшитого полиэтилена в свинцовой оболочке

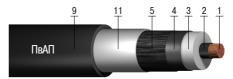


Рисунок 4. Силовой кабель с изоляцией из сшитого полиэтилена в алюминиевой оболочке

1. Круглая многопроволочная уплотненная токопроводящая жила:

- материал: АПвПг, АПвП2г, АПвПуг, АПвПу2г алюминий (А), ПвПг, ПвП2г, ПвПуг, ПвПу2г медь,
- сечение: от 185 до 1600 кв. мм, сечения от 1200 кв. мм скручены из 5 секторов (по требованию заказчика допускается и 1000 кв. мм).
- жилы могут быть выполнены с продольной герметизацией водоблокирующими материалами (индекс «гж»).
- обмотка из электропроводящих лент (для кабелей сечением более 800 кв. мм).
- 2. Экран из электропроводящей полимерной сшитой композиции.
- 3. Изоляция из сшитого полиэтилена (Пв).
- 4. Экран из экструдированной электропроводящей сшитой композиции.
- 5. Разделительный слой из электропроводящей водоблокирующей ленты.
- 6. Экран из медных проволок, скрепленных медной лентой:
 - сечением не менее 95 кв. мм для кабелей с сечением жилы 185–240 кв. мм,
 - сечением не менее 120 кв. мм для кабелей с сечением жилы 300-500 кв. мм.
 - сечением не менее 150 кв. мм для кабелей с сечением жилы 630 кв. мм,
 - сечением не менее 185 кв. мм для кабелей с сечением жилы 800-1600 кв. мм.

Примечание:

Сечение экрана выбирается в зависимости от токов короткого замыкания. Возможно изготовление кабеля с сечением экрана до 320 мм². По требованию заказчика в экран из медных проволок может быть встроен распределенный волоконно-оптический модуль (ов).

7. Разделительный слой:

- для марок с индексом «г» из водоблокирующей ленты,
- для марок с индексом «2г» из электропроводящей водоблокирующей ленты.
- 8. Слой из ламинированной алюмополимерной ленты (для марок с индексом «2г»).
- Оболочка из полиэтилена высокой плотности (для марок с индексом «у» из полиэтилена увеличенной толщины (Пу)).

- 10. Оболочка из свинца.
- 11. Алюминиевая оболочка.
- 12. Внутренняя оболочка из полиэтилена высокой плотности.
- 13. Проволочная оболочка.

По требованию заказчика (потребителя) оболочка может иметь продольные ребра жесткости, также допускается нанесение на наружную поверхность кабеля электропроводящего слоя, что оговаривается при заказе.

Область применения кабелей в полиэтиленовой оболочке на напряжение 64/110 кВ

Марка кабеля*	Наименование кабеля	Основная область применения
ПвПг АПвПг ПвПуг АПвПуг	Кабель с продольной герметизацией (водо- блокирующими лентами), в оболочке из по- лиэтилена высокой плотности	Для эксплуатации при прокладке в земле не- зависимо от степени коррозионной активности грунтов (в траншеях или бетонных лотках), если кабель защищен от механических повреждений
ПвП2г АПвП2г ПвПу2г АПвПу2г	То же с продольной и поперечной гермети- зацией (водоблокирующими лентами и алю- мо-полимерной лентой)	То же, а также в воде (в несудоходных водоемах) — при соблюдении мер, исключающих механические повреждения кабеля
ПвПг АПвПг	Кабель с изоляцией из сшитого полиэтилена, с водоблокирующими лентами герметизации металлического экрана, в оболочке из полиэтилена	Для прокладки в земле (в траншеях), если кабель защищен от механических повреждений
ПвП2г АПвП2г	Кабель с изоляцией из сшитого полиэтиле- на, с водоблокирующими лентами гермети- зации металлического экрана, в оболочке из полиэтилена	То же, а также в воде (в несудоходных водоемах) — при соблюдении мер, исключающих механические повреждения кабеля
ПвКПг АПвКПг	Кабель с изоляцией из сшитого полиэтиле- на, с водоблокирующими лентами гермети- зации металлического экрана, бронирован- ный, в оболочке из полиэтилена	Для прокладки в земле (траншеях), в местах, где возможны механические воздействия на кабель, в том числе растягивающие
ПвКП2г АПвКП2г	То же, с дополнительной алюмополимерной лентой поверх герметизированного экрана, бронированный, в оболочке из полиэтилена	Для прокладки в земле (траншеях), в местах, где возможны механические воздействия на кабель, в том числе растягивающие
ПвСП АПвСП	Кабель с изоляцией из сшитого полиэтилена, в оболочке из свинцового сплава	Для прокладки в земле (траншеях), где могут со- держаться вещества разрушительного действия на оболочку кабеля (солончаки, болота, насыпной грунт со шлаком и стройматериалами и т.п.), а также в зонах, опасных из-за электрокоррозии)
ПвАП АПвАП	Кабель с изоляцией из сшитого полиэтилена, в оболочке из алюминиевого сплава	Для прокладки в земле (траншеях), в местах, где возможны механические воздействия на кабель, в том числе вибрационные
ПвАгП АПвАгП	Кабель с изоляцией из сшитого полиэтилена, в гофрированной оболочке из алюмини- евого сплава	То же, для трассы сложной конфигурации

Конструктивные характеристики кабелей в полиэтиленовой оболочке на напряжение 64/110 кВ

		,		
Марка кабеля	Номинальное сечение жилы	Наружный диаметр кабеля, мм	Масса 1 км к	абеля, кг
	(сечение экрана), мм ²		Алюминиевая жила	Медная жи
	185 (95)	62,2	3816	4984
	240 (95)	64,4	4111	5626
	300 (120)	67,3	4679	6573
	350 (120)	69,0	4924	7133
	400 (120)	68,5	4967	7492
ΑΠΒΠΓ, ΠΒΠΓ	500 (120)	71,7	5457	8613
	630 (150)	75,4	6285	10262
	800 (185)	79,9	7350	12400
	1000 (185)	84,3	8202	14520
	1200 (185)	88,3	9026	16598
	1600 (185)	95,5	10753	21220
	185 (95)	64,0	3938	5106
	240 (95)	66,6	4276	5791
	300 (120)	69,1	4811	6705
АПвП2г, ПвП2г	350 (120)	71,2	5100	7310
	400 (120)	70,7	5142	7667
	500 (120)	73,5	5597	8753
	630 (150)	77,6	6477	10454
	800 (185)	82,1	7553	12604
	1000 (185)	86,1	8365	14683
	1200 (185)	90,1	9197	16769
	1600 (185)	97,3	10937	21404

Расчетный наружный диаметр и расчетная масса кабелей приведены в качестве справочного материала для кабелей с сечением экрана, указанным в таблице в скобках. Сечение экрана выбирается по термической устойчивости и может отличаться от указанного в таблице.

Конструктивные характеристики кабелей в полиэтиленовой оболочке на напряжение 127/220 кВ

		Масса 1 км к	абела кг
номинальное сечение жилы (сечение экрана), мм²	THOMATO VOGOTO ANA	Алюминиевая жила	Медная жила
400 (225)	92,95	8798,41	11290,41
500 (225)	95,70	9341,19	12461,47
630 (225)	98,89	10013,97	13945,53
800 (225)	102,97	10878,74	15877,55
1000 (225)	105,56	11514,07	18016,68
1200 (225)	109,33	12423,28	20226,41
1600 (225)	116,02	14162,25	24566,43
400 (225)	96,95	9396,01	11888,01
500 (225)	99,70	9956,10	13076,39
630 (225)	102,89	10648,96	14580,52
800 (225)	106,97	11539,41	16538,22
1000 (225)	109,56	12191,04	18693,65
1200 (225)	113,33	13123,97	20927,11
1600 (225)	120,02	14905,05	25309,23
	400 (225) 500 (225) 630 (225) 800 (225) 1000 (225) 1200 (225) 1600 (225) 400 (225) 500 (225) 630 (225) 800 (225) 1000 (225) 1200 (225)	(сечение экрана), мм² диаметр кабеля, мм 400 (225) 92,95 500 (225) 95,70 630 (225) 98,89 800 (225) 102,97 1000 (225) 105,56 1200 (225) 109,33 1600 (225) 116,02 400 (225) 96,95 500 (225) 99,70 630 (225) 102,89 800 (225) 106,97 1000 (225) 109,56 1200 (225) 113,33	(сечение экрана), мм² диаметр кабеля, мм Алюминиевая жила 400 (225) 92,95 8798,41 500 (225) 95,70 9341,19 630 (225) 98,89 10013,97 800 (225) 102,97 10878,74 1000 (225) 105,56 11514,07 1200 (225) 109,33 12423,28 1600 (225) 116,02 14162,25 400 (225) 96,95 9396,01 500 (225) 99,70 9956,10 630 (225) 102,89 10648,96 800 (225) 106,97 11539,41 1000 (225) 109,56 12191,04 1200 (225) 113,33 13123,97

Расчетный наружный диаметр и расчетная масса кабелей приведены в качестве справочного материала для кабелей с сечением экрана, указанным в таблице в скобках. Сечение экрана выбирается по термической устойчивости и может отличаться от указанного в таблице.

Кабели в оболочке из ПВХ-пластиката на напряжение 64/110 кВ

Рисунок 1. Кабель с изоляцией из сшитого полиэтилена с двойной герметизацией, ПВХ оболочкой пониженной горючести

Рисунок 2. Кабель с изоляцией из сшитого полиэтилена с ПВХ оболочкой пониженной горючести

1. Круглая многопроволочная уплотненная токопроводящая жила:

- материал: АПвВ, АПвВнг алюминий (А), ПвВ, ПвВнг медь,
- сечение: от 185 до 1600 кв. мм, сечения от 1200 кв. мм скручены из 5 секторов (по требованию заказчика допускается и 1000 кв. мм),
- обмотка из электропроводящих лент (для кабелей сечением более 800 кв. мм).
- 2. Экран из электропроводящей полимерной сшитой композиции.
- 3. Изоляция из сшитого полиэтилена (Пв).
- 4. Экран из экструдированной электропроводящей сшитой композиции.
- 5. Разделительный слой:
 - электропроводящей бумаги,
 - водоблокирующей бумаги.

6. Экран из медных проволок, скрепленных медной лентой:

- сечением не менее 95 кв. мм для кабелей с сечением жилы 185-240 кв. мм,
- сечением не менее 120 кв. мм для кабелей с сечением жилы 300-500 кв. мм.
- сечением не менее 150 кв. мм для кабелей с сечением жилы 630 кв. мм,
- сечением не менее 185 кв. мм для кабелей с сечением жилы 800-1600 кв. мм.

Примечание:

Сечение экрана выбирается в зависимости от токов короткого замыкания, которые необходимо рассчитать согласно условиям прокладки кабельной линии. Возможно изготовление кабеля с увеличенным сечением экрана.

По требованию заказчика в экран из медных проволок может быть встроен распределенный волоконно-оптический датчик температуры (ов).

7. Разделительный слой:

- из крепированной бумаги или прорезиненной ткани (для кабелей АПвВ и ПвВ),
- из стеклослюдосодержащих лент или стеклолент (для кабелей АПвВнг и ПвВнг),
- водоблокирующей ленты (для кабелей с герметизацией).
- 8. Алюмополимерная лента.
- 9. Внутренняя оболочка из ПВХ-пластиката.
- 10. Стеклолента.
- 11. Оболочка: из ПВХ-пластиката, в т.ч. с пониженным дымо- и газовыделением.
- 12. Разделительный слой из прорезиненной ткани.

Область применения кабелей в оболочке из ПВХ-пластиката на напряжение 64/110 кВ

B CCCMC INC NO	пол-пластиката на напряжени	10 0-1/ 1 1 0 KB
Марка кабеля*	Наименование кабеля	Основная область применения
ПвВ АПвВ	Кабель с изоляцией из сшитого полизтилена, в оболочке из поливинилхлоридного пластиката	Для одиночной прокладки в кабельных сооружениях и производственных помещениях. Не распространяют горение при одиночной прокладке
ПвВнг АПвВнг	Кабель с изоляцией из сшитого полизтилена, в оболочке из поливинилхлоридного пластиката пониженной горючести	Для групповой прокладки кабельных линий в кабельных сооружениях и производственных помещениях
ПвВнг(А) АПвВнг(А)	Кабель с изоляцией из сшитого полизтилена, в оболочке из поливинилхлоридного пластиката пониженной горючести	Для групповой прокладки кабельных линий в кабельных сооружениях и производственных помещениях
ПвВнг(A)-LS** АПвВнг(A)-LS**	Кабель с изоляцией из сшитого поли- этилена, в оболочке из поливинилхло- ридного пластиката пониженной пожа- роопасности	Для групповой прокладки кабельных линий в кабельных сооружениях, и производственных помещениях, и взрывоопасных зонах классов В-Iб, В-Iг, В-II, В-IIа
ПвВнг-LS** АПвВнг-LS**	Кабель с изоляцией из сшитого поли- этилена, в оболочке из поливинилхло- ридного пластиката пониженной пожа- роопасности	Для групповой прокладки кабельных линий в кабельных сооружениях, и производственных помещениях, и взрывоопасных зонах классов В-Iб, В-Iг, В-II, В-IIа
ПвВг АПвВг	То же, с водоблокирующими лентами герметизации металлического экрана	Для одиночной прокладки в кабельных сооружениях и про- изводственных помещениях, в которые возможно попадание почвенных и ливневых вод
ПвВнгг АПвВнгг	То же, с водоблокирующими лентами герметизации металлического экрана	Для групповой прокладки кабельных линий в кабельных сооружениях и производственных помещениях, в которые возможно попадание почвенных и ливневых вод
ПвВнгг(А) АПвВнгг(А)	То же, с водоблокирующими лентами герметизации металлического экрана	Для групповой прокладки кабельных линий в кабельных сооружениях и производственных помещениях, в которые возможно попадание почвенных и ливневых вод
ПвВнгг(A)-LS** АПвВнгг(A)-LS**	То же, с водоблокирующими лентами герметизации металлического экрана	Для групповой прокладки кабельных линий в кабельных сооружениях и производственных помещениях, в которые возможно попадание почвенных и ливневых вод, и взрывоопасных зонах классов В-I6, В-Iг, В-II, В-IIa
ПвВ2г АПвВ2г	То же, с дополнительной алюмополи- мерной лентой поверх герметизирован- ного экрана	Для одиночной прокладки в кабельных сооружениях и про- изводственных помещениях, в которые возможно попадание почвенных и ливневых вод
ПвВнг2г АПвВнг2г	То же, с дополнительной алюмополимерной лентой поверх герметизированного экрана	Для групповой прокладки кабельных линий в кабельных сооружениях и производственных помещениях, в которые возможно попадание почвенных и ливневых вод
ПвВнг2г(А) АПвВнг2г(А)	То же, с дополнительной алюмополимерной лентой поверх герметизированного экрана	Для групповой прокладки кабельных линий в кабельных сооружениях и производственных помещениях, в которые возможно попадание почвенных и ливневых вод
ПвВнг2г(A)-LS** АПвВнг2г(A)-LS**	То же, с дополнительной алюмополимерной лентой поверх герметизированного экрана	Для групповой прокладки кабельных линий в кабельных сооружениях и производственных помещениях, в которые возможно попадание почвенных и ливневых вод, и взрывоопасных зонах классов В-I6, В-Iг, В-II, В-IIa
ПвВнг2г-LS** АПвВнг2г-LS**	То же, с дополнительной алюмополимерной лентой поверх герметизированного экрана	То же
ПвКВ АПвКВ	Кабель с изоляцией из сшитого полизтилена, бронированный, в оболочке из поливинилхлоридного пластиката	Для одиночной прокладки в кабельных сооружениях и производственных помещениях, в местах, где возможны механические воздействия на кабель, в том числе растягивающие

ПвКВнг(А) АПвКВнг(А)	Кабель с изоляцией из сшитого полизтилена, бронированный, в оболочке из поливинилхлоридного пластиката пониженной горючести	Для групповой прокладки кабельных линий в кабельных сооружениях и производственных помещениях, в местах, где возможны механические воздействия на кабель, в том числе растягивающие
ПвКВнг АПвКВнг	Кабель с изолящией из сшитого полизтилена, бронированный, в оболочке из поливинилхлоридного пластиката пониженной горючести	Для групповой прокладки в кабельных сооружениях и производственных помещениях, где возможны механические воздействия на кабель, в том числе растягивающие
ПвКВнг(A)-LS** АПвКВнг(A)-LS**	Кабель с изолящией из сшитого поли- этилена, в оболочке из поливинилхло- ридного пластиката пониженной пожа- роопасности	Для групповой прокладки кабельных линий в кабельных сооружениях и производственных помещениях, в местах, где возможны механические воздействия на кабель, в том числе растягивающие
ПвКВнг-LS** АПвКВнг-LS**	Кабель с изолящией из сшитого поли- этилена, в оболочке из поливинилхло- ридного пластиката пониженной пожа- роопасности	Для групповой прокладки кабельных линий в кабельных сооружениях и производственных помещениях, в местах, где возможны механические воздействия на кабель, в том числе растягивающие
ПвКВг АПвКВг	То же, с водоблокирующими лентами герметизации металлического экрана	Для одиночной прокладки в кабельных сооружениях и про- изводственных помещениях, в которые возможно попадание почвенных и ливневых вод, где возможны механические воз- действия на кабель, в том числе растягивающие
ПвКВнгг(А) АПвКВнгг(А)	То же, с водоблокирующими лентами герметизации металлического экрана	Для групповой прокладки в кабельных сооружениях и про- изводственных помещениях, в которые возможно попадание почвенных и ливневых вод, где возможны механические воз- действия на кабель, в том числе растягивающие
ПвКВнгг АПвКВнгг	То же, с водоблокирующими лентами герметизации металлического экрана	Для групповой прокладки в кабельных сооружениях и про- изводственных помещениях, в которые возможно попадание почвенных и ливневых вод, где возможны механические воз- действия на кабель, в том числе растягивающие
ПвКВнгг(A)-LS** АПвКВнгг(A)-LS**	То же, с водоблокирующими лентами герметизации металлического экрана	Для групповой прокладки в кабельных сооружениях и про- изводственных помещениях, в которые возможно попадание почвенных и ливневых вод, где возможны механические воз- действия на кабель, в том числе растягивающие
ПвКВ2г АПвКВ2г	То же, с дополнительной алюмополимерной лентой поверх герметизированного экрана	Для одиночной прокладки в кабельных сооружениях и про- изводственных помещениях, в которые возможно попадание почвенных и ливневых вод, где возможны механические воз- действия на кабель, в том числе растягивающие
ПвКВнг2г(А) АПвКВнг2г(А)	То же, с дополнительной алюмополимерной лентой поверх герметизированного экрана	Для групповой прокладки в кабельных сооружениях и про- изводственных помещениях, в которые возможно попадание почвенных и ливневых вод, где возможны механические воз- действия на кабель, в том числе растягивающие
ПвКВнг2г АПвКВнг2г	То же, с дополнительной алюмополимерной лентой поверх герметизированного экрана	Для групповой прокладки в кабельных сооружениях и про- изводственных помещениях, в которые возможно попадание почвенных и ливневых вод, где возможны механические воз- действия на кабель, в том числе растягивающие
ПвКВнг2г(A)-LS** АПвКВнг2г(A)-LS**	То же, с дополнительной алюмополимерной лентой поверх герметизированного экрана	Для групповой прокладки в кабельных сооружениях и про- изводственных помещениях, в которые возможно попадание почвенных и ливневых вод, где возможны механические воз- действия на кабель, в том числе растягивающие
ПвКВнг2г-LS** АПвКВнг2г-LS**	То же, с дополнительной алюмополимерной лентой поверх герметизированного экрана	Для групповой прокладки в кабельных сооружениях и про- изводственных помещениях, в которые возможно попадание почвенных и ливневых вод, где возможны механические воз- действия на кабель, в том числе растягивающие

^{* -} кабели с индексом «у» (с оболочкой из ПВХ-пластиката увеличенной толщины) предназначены для прокладки на трассах сложной конфигурации;
- кабели предназначены для прокладки на трассах без ограничения разности уровней;
- кабели могут быть проложены в сухих грунтах (песок, песчано-глинистая и нормальная почва с влажностью менее 14 %).

Конструктивные характеристики кабелей в оболочке из ПВХ-пластиката на напряжение 64/110 кв

Марка кабеля	Номинальное сечение жилы	Наружный диаметр кабеля, мм	Масса 1 км к	абеля, кг
	(сечение экрана), мм ²		Алюминиевая жила	Медная жила
	185 (95)	62,2	4073	5241
	240 (95)	64,4	4378	5893
	300 (120)	67,3	4976	6870
	350 (120)	69,0	5228	7437
	400 (120)	68,5	5269	7794
АПвВ, ПвВ	500 (120)	71,7	5793	8949
	630 (150)	75,4	6638	10346
	800 (185)	79,9	7747	12797
	1000 (185)	84,3	8644	14962
	1200 (185)	88,3	9514	17086
	1600 (185)	95,5	11290	21404
	185 (95)	62,2	4129	5297
	240 (95)	64,4	4435	5951
	300 (120)	67,3	5041	6935
	350 (120)	69,0	5294	7504
	400 (120)	68,5	5335	7860
АПвВнг, ПвВнг	500 (120)	71,7	5866	9022
	630 (150)	75,4	6715	10423
	800 (185)	79,9	7833	12883
	1000 (185)	84,3	8740	15058
	1200 (185)	88,3	9619	17191
	1600 (185)	95,5	11402	21743

Расчетный наружный диаметр и расчетная масса кабелей приведены в качестве справочного материала для кабелей с сечением экрана, указанным в таблице в скобках. Сечение экрана выбирается по термической устойчивости и может отличаться от указанного в таблице.

Конструктивные характеристики кабелей в оболочке из ПВХ-пластиката на напряжение 127/220 кВ

Марка кабеля	Номинальное сечение жилы Наружный Масса 1 км кабеля, кг		абеля, кг	
·	(сечение экрана), мм ²	диаметр кабеля,мм	Алюминиевая жила	Медная жила
	400 (225)	90,03	9099,29	11591,28
	500 (225)	92,78	9652,72	12773,00
	630 (225)	95,97	10337,85	14269,41
АПвВ, ПвВ	800 (225)	100,05	11218,43	16217,24
	1000 (225)	102,64	11863,79	18366,40
	1200 (225)	106,41	12787,60	20590,74
	1600 (225)	113,10	14552,48	24956,66
	400 (225)	94,03	9814,16	12306,16
	500 (225)	96,78	10384,48	13504,76
	630 (225)	99,97	11088,85	15020,41
АПвВу, ПвВу	800 (225)	104,05	11993,49	16992,30
	1000 (225)	106,64	12653,81	19156,42
	1200 (225)	110,41	13598,95	21402,08
	1600 (225)	117,10	15400,38	25804,57

Кабели в оболочке из безгалогенной полимерной композиции на напряжение 64/110 кВ

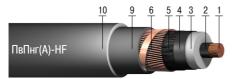


Рисунок 1. Кабель с изоляцией из сшитого полиэтилена, в оболочке из полимерной композиции, не содержащей галогенов

Рисунок 1. Кабель с изоляцией из сшитого полизтилена, с дополнительной алюмополимерной лентой поверх герметизированного экоана

1. Круглая многопроволочная уплотненная токопроводящая жила:

- материал: АПвВ, АПвВнг алюминий (А), ПвВ, ПвВнг медь,
- сечение: от 185 до 1600 кв. мм, сечения от 1200 кв. мм скручены из 5 секторов (по требованию заказчика допускается и 1000 кв. мм),
- обмотка из электропроводящих лент (для кабелей сечением более 800 кв. мм).
- 2. Экран из электропроводящей полимерной сшитой композиции.
- 3. Изоляция из сшитого полиэтилена (Пв).
- 4. Экран из экструдированной электропроводящей сшитой композиции.
- 5. Разделительный слой:
- электропроводящей бумаги,
- водоблокирующей бумаги.

6. Экран из медных проволок, скрепленных медной лентой:

- сечением не менее 95 кв. мм для кабелей с сечением жилы 185-240 кв. мм.
- сечением не менее 120 кв. мм для кабелей с сечением жилы 300-500 кв. мм,
- сечением не менее 150 кв. мм для кабелей с сечением жилы 630 кв. мм,
- сечением не менее 185 кв. мм для кабелей с сечением жилы 800-1600 кв. мм.

Примечание:

Сечение экрана выбирается в зависимости от токов короткого замыкания, которые необходимо рассчитать согласно условиям прокладки кабельной линии. Возможно изготовление кабеля с увеличенным сечением экрана. По требованию заказчика в экран из медных проволок может быть встроен распределенный волоконно-оптический датчик температуры (ов).

- 7. Разделительный слой водоблокирующей ленты (для кабелей с герметизацией).
- 8. Алюмополимерная лента.
- 9. Внутренняя оболочка из безгалогенной композиции.
- 10. Внешняя оболочка из безгалогенной композиции.

Область применения кабелей

в оболочке из безгалогенной полимерной композиции на напряжение 64/110 кВ

Марка кабеля*	Наименование кабеля	Основная область применения
ПвПнг(А)-НF АПвПнг(А)-НF	Кабель с изоляцией из сшитого полиэтилена, в оболочке из полимерной композиции, не содержащей галогенов	Для прокладки в кабельных сооружениях и производственных помещениях, где есть требования по ограничению воздействия коррозионно- активных газов
ПвПнгг(А)-НF АПвПнгг(А)-НF	То же, с водоблокирующими лентами герметизации металлического экрана	Для прокладки в кабельных сооружениях и производственных помещениях, в которые возможно попадание почвенных и ливневых вод, где есть требования по ограничению воздействия коррозионно-активных газов
ПвПнгг-НF АПвПнгг-НF	То же, с водоблокирующими лентами герметизации металлического экрана	Для прокладки в кабельных сооружениях и производственных помещениях, в которые возможно попадание почвенных и ливневых вод, где есть требования по ограничению воздействия коррозионно-активных газов

ПвПнг2г(А)-НF АпвПнг2г(А)-НF	То же, с дополнительной алюмополимерной лентой поверх герметизированного экрана	Для прокладки в кабельных сооружениях и производственных помещениях, в которые возможно попадание почвенных и ливневых вод, где есть требования по ограничению воздействия коррозионно-активных газов
ПвПнг2г-НF АПвПнг2г-НF	То же, с дополнительной алюмополимерной лентой поверх герметизированного экрана	То же
ПвКПнг(А)-НF АПвКПнг(А)-НF	Кабель с изоляцией из сшитого полиэтилена, бронированный, в оболочке из полимерной композиции, не содержащей галогенов	Для прокладки в кабельных сооружениях и производственных помеще- ниях, где есть требования по ограничению воздействия коррозионно- активных газов, а также где возможны механические воздействия на кабель, в том числе растягивающие
ПвКПнг-НҒ АПвКПнг-НҒ	Кабель с изоляцией из сшитого полиэтилена, бронированный, в оболочке из полимерной композиции, не содержащей галогенов	Для прокладки в кабельных сооружениях и производственных помещениях, где есть требования по ограничению воздействия коррозионно-активных газов, а также где возможны механические воздействия на кабель, в том числе растягивающие
ПвКПнгг(А)-НF АПвКПнгг(А)-НF	То же, с водоблокирующими лентами герметизации металлического экрана	Для прокладки в кабельных сооружениях и производственных помещениях, в которые возможно попадание почвенных и ливневых вод, где есть требования по ограничению воздействия коррозионно-активных газов
ПвКПнгг-НF АПвКПнгг-НF	То же, с водоблокирующими лентами герметизации металлического экрана	Для прокладки в кабельных сооружениях и производственных помещениях, в которые возможно попадание почвенных и ливневых вод, где есть требования по ограничению воздействия коррозионно-активных газов
ПвКПнг2г(А)-НF АПвКПнг2г(А)-НF	То же, с дополнительной алюмополимерной лентой поверх герметизированного экрана	Для прокладки в кабельных сооружениях и производственных помещениях, в которые возможно попадание почвенных и ливневых вод, где есть требования по ограничению воздействия коррозионно-активных газов
ПвКПнг2г-НF АПвКПнг2г-НF	То же, с дополнительной алюмополимерной лентой поверх герметизированного экрана	Для прокладки в кабельных сооружениях и производственных помещениях, в которые возможно попадание почвенных и ливневых вод, где есть требования по ограничению воздействия коррозионно-активных газов

Конструктивные характеристики кабелей в оболочке из безгалогенной композиции на напряжение 64/110 кВ

	Номинальное сечение	Наружный диаметр	масса 1 км кабеля, кг			
Марка кабеля	жилы (сечение экрана), мм²	кабеля, мм	Алюминиевая жила	Медная жила		
	185 (95)	68,5	5167	6331		
	240 (95)	71,3	5617	7127		
	300 (120)	73,5	6215	8094		
	350 (120)	75,4	6552	8735		
АПвПнг(A)-HF	400 (120)	74,9	6567	9075		
ПвПнг(A)-НF	500 (120)	78,1	7164	10288		
	630 (150)	81,9	8205	12157		
	800 (185)	85,7	9348	14338		
	1000 (185)	91,9	10791	17403		
	1200 (185)	95,4	11690	19624		
	1600 (185)	101,8	13508	23307		

Электрические характеристики кабелей на напряжение 64/110 кВ

Токовые нагрузки кабелей при прокладке в земле в зависимости от способа прокладки и системы заземления экранов указаны в таблицах 1—4.

Таблица 1. Токовые нагрузки для кабеля, проложенного в земле, не более, А

		Кабели	треугольнико	и, экраны сое	динены и зазе	емлены с двух	сторон	
Номинальное сечение жилы.		Медна	ая жила			Алюминие	евая жила	
MM ²	Одна	Одна цепь		Две цепи		цепь	Две цепи	
	K _H =0,8	K _H =1	K _H =0,8	K _H =1	K _H =0,8	$K_{_{\!\scriptscriptstyle H}}=1$	K _H =0,8	$K_{_{\!\scriptscriptstyle H}}=1$
185	502	429	452	382	396	340	358	303
240	572	489	515	434	455	389	409	345
300	632	538	567	476	507	432	455	383
350	678	577	608	508	545	462	490	408
400	723	612	645	539	587	497	524	439
500	798	673	709	590	654	553	583	486
630	859	721	760	630	719	605	637	530
800	932	779	820	677	787	659	694	575
1000	1009	840	884	729	864	722	759	628
1200	1081	895	944	775	938	779	820	675
1600	1175	970	1020	835	1041	863	905	744

Таблица 2. Токовые нагрузки для кабеля, проложенного в земле, не более, А

	Кабели треугольником, экраны соединены и заземлены с двух сторон										
Номинальное сечение		Медна	я жила		Алюминиевая жила						
жилы, мм ²	Одна цепь		Две цепи		Одна	цепь	Две цепи				
	K _H =0,8	$K_H = 1$	K _H =0,8	$K_{_{\!\scriptscriptstyle H}}=1$	K _H =0,8	K _H =1	K _H =0,8	$K_{_{\!\scriptscriptstyle H}}=1$			
185	502	429	452	382	396	340	358	303			
240	572	489	515	434	455	389	409	345			
300	632	538	567	476	507	432	455	383			
350	678	577	608	508	545	462	490	408			
400	723	612	645	539	587	497	524	439			
500	798	673	709	590	654	553	583	486			
630	859	721	760	630	719	605	637	530			
800	932	779	820	677	787	659	694	575			
1000	1009	840	884	729	864	722	759	628			
1200	1081	895	944	775	938	779	820	675			
1600	1175	970	1020	835	1041	863	905	744			

При прокладке в земле токи рассчитаны для расположения кабелей треугольником встык и в горизонтальной плоскости, для расстояния между осями соседних кабелей $2 \cdot D_{_{\rm II}}$, глубины прокладки 1,5 м, расстояния между цепями 0,8 м, удельного термического сопротивления грунта ρ =1,2 К · м/Вт, коэффициента нагрузки K_{_}=0,8 и 1.

Таблица 3. Токовые нагрузки для кабеля, проложенного в земле, не более, А

	Кабели в горизонтальной плоскости, экраны соединены и заземлены с двух сторон								
Номинальное		Медна	я жила		Алюминиевая жила				
сечение жилы, мм²	Одна	Одна цепь		Две цепи		цепь	Две цепи		
•	K _H =0,8	K _H =1	K _H =0,8	$K_{_{\!\scriptscriptstyle H}}=1$	K _H =0,8	$K_{_{\!\scriptscriptstyle H}}=1$	K _H =0,8	$K_{H}=1$	
185	480	407	427	357	391	333	348	293	
240	537	453	475	396	442	375	392	328	
300	581	488	511	425	486	410	429	358	
350	615	515	540	448	520	438	457	372	
400	644	538	564	466	549	460	482	400	
500	693	576	604	497	599	501	524	433	
630	737	610	639	524	649	540	564	465	
800	785	648	677	554	703	583	608	500	
1000	841	691	721	588	758	626	652	534	
1200	879	720	751	611	802	659	687	561	
1600	931	760	790	641	865	708	736	598	

Таблица 4. Токовые нагрузки для кабеля, проложенного в земле, не более, А

	Кабели	в горизонтал	льной плоскос	ти, экраны со	единены по сі	истеме прави	льной транспо	ЭЗИЦИИ
Номинальное		Медна	я жила		Алюминиевая жила			
сечение жилы, мм²	Одна	Одна цепь		Две цепи		цепь	Две цепи	
,	K _H =0,8	K _H =1	K _H =0,8	Кн=1	K _H =0,8	K _H =1	K _H =0,8	$K_{H}=1$
185	539	463	483	409	421	361	377	319
240	622	533	556	470	486	417	435	367
300	704	602	627	529	551	470	491	414
350	767	653	682	573	602	513	535	451
400	824	701	731	614	647	551	574	482
500	927	787	821	687	732	621	647	542
630	1045	885	922	770	830	703	732	612
800	1176	993	1033	861	943	797	828	691
1000	1368	1153	1197	996	1078	908	943	785
1200	1510	1267	1315	1091	1195	1003	1041	864
1600	1749	1463	1515	1254	1400	1171	1211	1003

Таблица 5. Токовые нагрузки для кабеля, проложенного на воздухе, не более, А

		Кабели тре	угольником		Кабели в горизонтальной плоскости				
Номинальное сечение жилы, мм²	экраны соединены и заземлены с двух сторон		системе п	экраны соединены по системе правильной транспозиции		рединены ены с двух рон	экраны соединены по системе правильной транспозиции		
	Си жила	Al жила	Си жила	Al жила	Си жила	AI жила	Си жила	AI жила	
185	610	491	667	520	597	482	667	520	
240	698	568	780	609	680	555	780	609	
300	773	637	895	700	747	618	895	700	
350	830	689	983	771	802	668	983	771	
400	883	739	1068	839	846	713	1068	839	
500	974	827	1219	961	926	792	1219	961	
630	1066	919	1399	1110	997	870	1399	1110	
800	1185	1029	1651	1293	1074	954	1651	1293	
1000	1288	1135	1895	1486	1143	1035	1895	1486	
1200	1378	1230	2123	1676	1200	1102	2123	1676	
1600	1534	1390	2526	2013	1354	1254	2523	2016	

При прокладке на воздухе токи рассчитаны для расположения кабелей треугольником при расстоянии между кабелями в свету 250 мм и в горизонтальной плоскости при расстоянии между осями соседних кабелей 2 ⋅ D . н.

Допустимые токи даны для температуры окружающей среды 15 °C при прокладке в земле и 25 °C при прокладке на воздухе. При других расчетных температурах окружающей среды необходимо применять поправочные коэффициенты, указанные в таблице 7.

При других условиях прокладки расчет допустимых токов необходимо проводить в соответствии с требованиями стандарта МЭК 60287.

Допустимые токи кабеля в режиме перегрузки при прокладке в земле и на воздухе могут быть рассчитаны путем умножения значений, указанных в таблицах 1—4 на коэффициент 1,17 и указанных в таблице 5— на коэффициент 1,20.

Таблица 6.Сопротивление по постоянному и переменному току, индуктивность и емкость 1 км кабеля 64/110 кВ

40е ы, мм²	ПОСТОЯ	ивление янному 0 °C, Ом/км	Индуктивность 1 км кабеля, мГн		абеля,	Сопротивление переменному току при 90 °C, Ом/км				
Номинальное сечение жилы, мм²	AL жила	Си жила	В плоскости	Треугольником	Емкость 1 км кабеля, мкФ	В плос AL жила	Си жила	Треугол AL жила	Си жила	
185	0,164	0,0991	0,63	0,44	0,137	0,177	0,113	0,161	0,098	
240	0,125	0,0754	0,62	0,43	0,147	0,163	0,105	0,148	0,091	
300	0,100	0,0601	0,61	0,42	0,158	0,148	0,096	0,134	0,083	
400	0,0778	0,0470	0,59	0,40	0,180	0,122	0,081	0,106	0,067	
500	0,0605	0,0366	0,58	0,39	0,194	0,101	0,070	0,085	0,054	
630	0,0449	0,0283	0,57	0,37	0,210	0,086	0,063	0,069	0,045	
800	0,0367	0,0221	0,55	0,36	0,226	0,074	0,057	0,056	0,038	
1000	0,0291	0,0176	0,54	0,35	0,245	0,068	0,035	0,0412	0,0215	
1200	0,0247	0,0151	0,53	0,35	0,264	0,0522	0,0318	0,0326	0,0205	
1600	0,0186	0,0113	0,52	0,33	0,298	0,0405	0,0256	0,025	0,016	
1800	0,0165	0,0101	0,52	0,33	0,31	0,0365	0,023	0,0225	0,0147	
2000	0,0149	0,009	0,51	0,33	0,32	0,0334	0,021	0,0206	0,0135	

Значения рабочей емкости кабелей являются средними значениями, основанными на измерениях и расчетах.

Значения зарядного тока действительны при температуре 20 °C, частоте 50 Гц и номинальном напряжении кабеля.

Значения емкости, зарядного тока и тока замыкания на землю не будут изменяться для кабелей с СПЭ—изоляцией при увеличении температуры от 20 °C до максимально допустимой температуры жилы.

Расчетные значения сопротивления по постоянному и переменному току, индуктивности и емкости кабеля приведены в таблице 10 в качестве справочного материала.

Электрические характеристики кабелей на напряжение 127/220 кВ

Длительно допустимые токи кабелей при прокладке в земле должны соответствовать указанным в таблицах 11–12, при прокладке на воздухе – в таблице 13.

Таблица 7. Ток при прокладке в земле при расположении кабелей треугольником, не более, А

	Экр	раны соедине с двух	ены и заземле сторон	НЫ	Экраны соединены по системе правильной транспозиции				
Номинальное сечение жилы,	Кабель	с медной/ал	юминиевой жі	илой *	Кабелі	ь с медной/ал	юминиевой ж	илой *	
MM ²	Одна	цепь	Две і	цепи	Одна	цепь	Две	цепи	
	K _H =0,8	$K_{_{\!\scriptscriptstyle H}}=1$	K _H =0,8	K _H =1	K _H =0,8	K _H =1	K _H =0,8	$K_{_{\!\scriptscriptstyle H}}=1$	
400	695/568	592/485	618/506	518/426	774/609	667/524	694/545	589/463	
500	777/640	659/545	688/599	574/476	869/687	747/590	776/613	657/519	
630	845/708	713/600	744/650	619/523	975/778	835/665	867/791	732/584	
800	925/779	776/657	809/684	671/570	1125/888	960/758	997/787	839/662	
1000	995/853	832/717	868/746	718/621	1258/1000	1073/850	1111/882	934/742	
1200	1067/924	881/771	923/804	759/665	1377/1103	1170/931	1209/970	1015/812	
1600	1154/1022	950/851	993/887	814/731	1568/1280	1329/1074	1370/1119	1150/934	

 $^{^{*}}$ В числителе указаны значения тока для кабелей с медными жилами, в знаменателе — с алюминиевыми жилами.

Таблица 8. Ток при прокладке в земле при расположении кабелей в горизонтальной плоскости, не более, А

	Эк	раны соедине с двух	ены и заземле сторон	НЫ	Экраны соединены по системе правильной транспозиции					
Номинальное сечение жилы,	Кабель	с медной/ал	юминиевой ж	илой *	Кабел	Кабель с медной/алюминиевой жилой *				
MM ²	Одна	цепь	Две	Две цепи		Одна цепь		цепи		
	K _H =0,8	$K_{_{\!\scriptscriptstyle H}}=1$	K _H =0,8	K,=1	K _H =0,8	$K_{_{\rm H}}=1$	K _H =0,8	$K_{_{\!\scriptscriptstyle H}}=1$		
400	650/549	548/466	567/481	472/402	805/633	695/546	715/562	607/477		
500	703/602	589/509	610/527	504/437	906/716	781/616	803/633	679/536		
630	752/658	626/551	648/569	531/471	1022/812	879/697	902/717	761/605		
800	805/714	669/597	690/615	567/508	1152/923	986/790	1011/811	852/683		
1000	863/770	713/642	735/661	597/542	1344/1056	1146/900	1174/925	987/776		
1200	903/816	744/677	766/698	622/569	1485/1171	1260/994	1291/1022	1081/854		
1600	956/880	785/728	805/745	653/606	1724/1375	1456/1161	1490/1191	1244/992		

Таблица 9. Ток при прокладке на воздухе, не более, А

		Кабели тре	угольником		Кабели в горизонтальной плоскости				
Номинальное сечение жилы, мм²	Экраны соединены и заземлены с двух сторон		Экраны соединены по системе правильной транспозиции		Экраны соединены и заземлены с двух сторон		Экраны соединены по системе правильной транспозиции		
	Си жила	Al жила	Си жила	Al жила	Cu жила	Al жила	Си жила	AI жила	
400	887	730	1018	799	841	701	1020	801	
500	994	825	1159	906	916	782	1150	921	
630	1096	924	1329	1055	982	860	1339	1060	
800	1227	1042	1570	1233	1098	961	1517	1216	
1000	1330	1149	1805	1421	1118	1020	1815	1416	
1200	1420	1248	2033	1606	1170	1185	2043	1606	
1600	1584	1410	2126	1923	1314	1234	2430	1940	

При прокладке в земле токи рассчитаны для расположения кабелей треугольником встык и в горизонтальной плоскости, для расстояния между осями соседних кабелей 2Dн, глубины прокладки 1,5 м, расстояния между цепями 0,8 м, удельного термического сопротивления грунта р=1,2 К⋅м/Вт, коэффициента нагрузки Кн=0,8 и 1. При других значениях глубины прокладки необходимо применять поправочные коэффициенты, указанные в таблице 14.

Таблица 10.Сопротивление постоянному и переменному току, индуктивность и емкость 1 км кабеля 127/220 кВ

ечение	стоянно	Сопротивление по- стоянному току при 20 °C, Ом/км		, кабеля, мі н		Сопротивление переменному току при 90 °C, Ом/км				
Номинальное сечение жилы, мм²	при 20 ч	С, Ом/км	КОСТИ	оником	ь 1 км кабеля, мкФ	В пло	СКОСТИ	Треугольником		
Номин:	AL жила	Си жила	В плоскости	Треугольником	Емкость	AL жила	Cu жила	AL жила	Cu жила	
400	0,0778	0,0470	0,64	0,45	0,134	0,141	0,108	0,107	0,073	
500	0,0605	0,0366	0,62	0,44	0,142	0,132	0,101	0,096	0,065	
630	0,0449	0,0283	0,60	0,42	0,152	0,118	0,091	0,081	0,055	
800	0,0367	0,0221	0,58	0,40	0,165	0,102	0,081	0,066	0,045	
1000	0,0291	0,0176	0,57	0,39	0,197	0,065	0,043	0,0404	0,0268	
1200	0,0247	0,0151	0,56	0,38	0,209	0,0522	0,033	0,0324	0,0204	
1600	0,0186	0,0113	0,54	0,36	0,231	0,040	0,026	0,0248	0,0159	
1800	0,0165	0,0101	0,54	0,36	0,23	0,036	0,024	0,0223	0,0146	
2000	0,0149	0,009	0,54	0,35	0,24	0,033	0,022	0,0203	0,0134	

Допустимые токи короткого замыкания по жиле и экрану

Нагрев кабеля при коротком замыкании считать адиабатическим, т.е. рассеивание тепла в окружающую среду не учитывается. При этом полученные значения допустимого тока короткого замыкания для жилы близки к реальным вследствие малых потерь тепла в изоляции, а реально допустимые токи короткого замыкания экрана на 5—10 % выше расчетных вследствие отвода тепла в окружающую среду. Допустимые токи короткого замыкания рассчитываются по формуле:

$$I=k_1 \frac{S}{\sqrt{t}} \sqrt{\ln \frac{k_2 + T_k}{k_2 + T_H}}$$

$$j = \frac{S}{I} = \frac{1}{\sqrt{t}} \left[k_1 \sqrt{\ln \frac{k_2 + T_k}{k_2 + T_H}} \right] = \frac{1}{\sqrt{t}} k_3$$

где

/ – допустимый ток к.з. (A);

S — сечение жилы (мм 2);

t — длительность к.з. (сек);

 T_{k} – конечная температура (max 250 °C);

 T_{μ} — начальная температура (°C);

j — допустимая плотность тока (A/мм²);

 k_1 , k_2 — коэффициенты, зависящие от материала жилы или экрана;

 k_3 — коэффициент, зависящий от материала жилы и экрана, численно равный допустимой плотности тока односекундного короткого замыкания.

Таблица 11.

Материал жилы и экрана					атура для чета	Допустимая плотность тока (А/мм²) в зависимости от длительности короткого замыкания				
	k ₁	k_2	k ₃	T _H	T _k	t=0,1	t=0,5	t=0,8	t=1	t=2
Медная жила	226	234	143,2	90	250	452,2	202,5	160,1	143,2	101,3
Алюминиевая жила	148	228	94,5	90	250	298,8	133,6	105,7	94,5	66,9
Медный экран	226	234	133,0	80	210	420,6	188,1	148,7	133,0	94,0
Алюминиевый экран	148	228	87,8	80	210	277,6	124,2	98,2	87,8	62,1

Таблица 12. Термически допустимые токи односекундного короткого замыкания в жиле кабеля 110-220 кВ

Номинальное сечение	Допустимый ток односекундного короткого замыкания кабеля, кА				
жилы, мм ²	с медной жилой	с алюминиевой жилой			
185	26,5	17,5			
240	34,3	22,7			
300	42,9	28,4			
350	50,1	33,1			
400	57,2	37,8			
500	71,5	47,2			
630	90,1	59,5			
800	114,5	75,6			
1000	143,1	95,5			
1200	171,7	113,4			
1600	228.9	151.2			

Токи короткого замыкания рассчитаны при температуре жилы до начала короткого замыкания 90 °C и предельной температуре жилы при коротком замыкании 250 °C.

Таблица 13.

Термически допустимые токи односекундного короткого замыкания в экранах кабеля 110-220 кВ

Номинальное	Допустимый ток односекундного короткого замыкания, кА				
сечение медного экрана, мм²	для кабелей с безгалогенной оболочкой	для остальных марок			
95	16,9	14,6			
120	21,4	18,5			
150	26,7	23,1			
185	32,9	28,5			
225	40,0	34,7			
265	47,2	40,8			

Токи короткого замыкания рассчитаны при температуре медного экрана до начала короткого замыкания 80 °C и предельной температуре медного экрана при коротком замыкании 350 °C (для кабелей с безгалогенной оболочкой 250 °C).

Для других значений сечения медного экрана допустимый ток односекундного короткого замыкания рассчитывают по формуле:

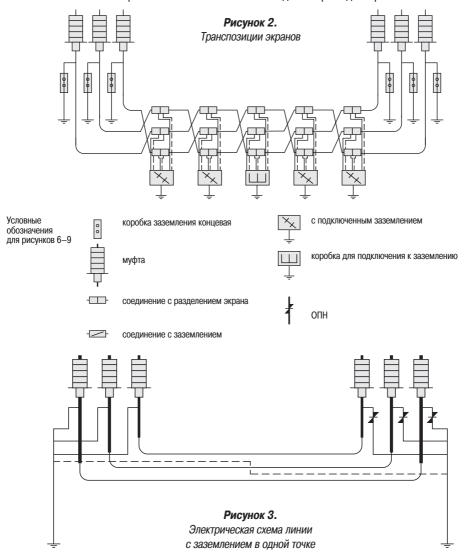
lк.з= k • Sэ, где

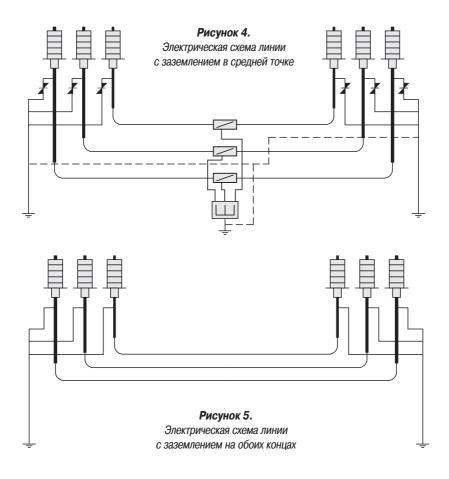
Iк.3— допустимый ток односекундного короткого замыкания в медном экране, (кА);

k — коэффициент, равный 0,178 кА/мм 2 или 0,154 кА/мм 2 для кабеля с безгалогенной оболочкой;

Sэ — номинальное сечение медного экрана, (мм²).

При продолжительности короткого замыкания, отличающейся от 1 сек., значения тока короткого замыкания, указанные в таблицах 8 и 9, необходимо умножить на поправочный коэффициент K, рассчитанный по формуле


$$k = \frac{1}{\sqrt{t}}$$
. где


t – продолжительность короткого замыкания, сек.

Заземление экранов

Для однофазных высоковольтных кабелей с изоляцией из сшитого полиэтилена необходимо предъявлять повышенное внимание к выбору сечения экранов и проводить соответствующие обосновывающие расчеты по способу их заземления. При заземлении экранов кабелей с двух сторон в нормальном режиме и при коротких замыканиях по экранам протекают токи, сопоставимые по величине с токами в жилах. Снижения токов в экранах можно добиться применением транспозиции экранов для протяженных кабельных линий или применением заземления линии с одной стороны для коротких линий.

При проектировании кабельной линии необходимо учитывать, что кабель и арматура должны выдерживать предполагаемые динамические и термические нагрузки при коротком замыкании. Токи короткого замыкания механически нагружают не только кабель, но и арматуру. Вблизи от магистральных сетей и крупных электростанций значение динамической нагрузки при коротком замыкании имеет существенно большее значение, чем в более отдаленной части сети. В данном случае необходимо проверить динамическую прочность арматуры, а также крепление самого кабеля.

$$P = \frac{0.2}{S} I^2_{YJJ;(H/M)}$$

где

Р - ударная сила

S - расстояние между осями кабелей, мм

Іуд - 2,5 І $_{K.3.}$ (кА) - ударный ток

Поправочные коэффициенты

Таблица 14. Поправочные коэффициенты

Глубина прокладки, м	0,8	0,9	1,0	1,1	1,2	1,3	1,4	1,5
Поправочный коэффициент К "	1,08	1,06	1,05	1,04	1,03	1,02	1,01	1,00

При прокладке на воздухе токи рассчитаны для расположения кабелей треугольником при расстоянии между кабелями в свету 250 мм, треугольником встык и в горизонтальной плоскости при расстоянии между осями соседних кабелей 2Dн. Допустимые токи даны для температуры окружающей среды 15 °C при прокладке в земле и 25 °C при прокладке на воздухе. При других расчетных температурах окружающей среды необходимо применять поправочные коэффициенты, указанные в таблице 15.

Рисунок 6. Зависимость поправочного коэффициента К_л от глубины прокладки кабелей.

Таблица 15. Поправочные коэффициенты

Поправочные коэффициенты при температуре среды,							ı, °C				
Условия прокладки	0	5	10	15	20	25	30	35	40	45	50
Земля	1,1	1,06	1,03	1,0	0,96	0,92	0,89	0,85	0,81	0,77	0,73
Воздух	1.18	1.14	1,13	1,08	1.05	1.0	0.96	0.91	0.86	0.81	0,76

Рисунок 7. Зависимость поправочного коэффициента К₃ от температуры окружающей среды.

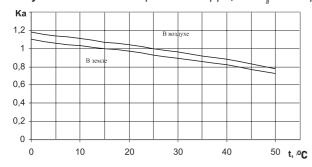
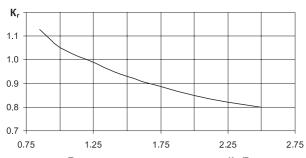



Таблица 16. Поправочные коэффициенты в зависимости от удельного теплового сопротивления почвы

Термическое сопротивление почвы, К м/Вт	0,85	1,0	1,2	1,5	2,0	2,5
Поправочный коэффициент K _r	1,13	1,05	1,0	0,93	0,85	0,80

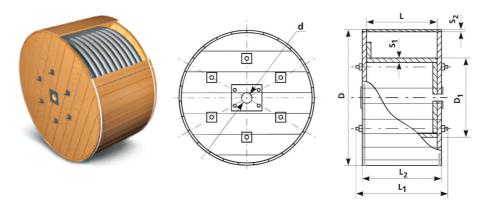
Рисунок 8. Зависимость поправочного коэффициента К, от термического сопротивления почвы.

Термическое сопротивление почвы, К-м/Вт

Таблица 17. Поправочные коэффициенты в зависимости от количества проложенных рядом линий

Расстояние между		Поправочный коэффицие	ент при количестве линий	
линиями, мм	1	2	3	4
400	1,00	0,71	0,71	0,65
600	1,00	0,85	0,76	0,72
800	1,00	0,88	0,79	0,75
1000	1,00	0,89	0,81	0,79

Рисунок 9. Зависимость поправочного коэффициента К_n от количества линий и расстояния между ними.



Нормы намоток кабелей на барабаны

Кабели поставляются на обшитых деревянных или металлических барабанах.

Рисунок 10. Кабельный барабан

Таблица 18. Размеры деревянных барабанов

Тип барабана	26	30	32
Диаметр щеки D, мм	2650	3000	3200
Диаметр шейки D, мм	1500	1800	1800
Длина шейки L, мм	1500	1800	1800
Диаметр осевого отверстия d, мм	120	120	120
Вес барабана, кг	1450	2380	3000

Таблица 19. Расчетная длина кабеля на барабане, м

Диаметр кабеля, мм	Тип барабана					
	26	30	32			
64	915	1360	1700			
68	800	1190	1490			
70	745	1110	1400			
74	655	980	1235			
78	580	870	1095			
83	505	755	950			
87	450	675	855			
91	405	605	770			
98	340	510	650			
100	320	485	620			
104		435	560			
108		400	510			
111		370	480			
115		340	440			
120		305	400			